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Abstract

In this paper we numerically integrate the backward heat conduction equation ou=ot ¼ mMu, in which the Dirichlet

boundary conditions are specified at the boundary of a certain spatial domain and a final data is specified at time T > 0.

In order to treat this ill-posed problem we first convert it through the transformation s ¼ T � t to an unstable initial-

boundary-value problem: ou=os ¼ �mMu together with the same boundary conditions and the same data at s ¼ 0. Then,

we consider the contraction map of u to v ¼ exp½�as�u by a suitable contraction factor a > 0, which is analyzed by

considering the stability of the semi-discretization numerical schemes. The resulting ordinary differential equations at

the interior grid points are then numerically integrated by the group preserving scheme, proposed by Liu [Int. J. Non-

Linear Mech. 36 (2001) 1047], and the stable range of the index r ¼ mDt=ðDxÞ2 is derived. Numerical tests for both

forward and backward heat conduction problems are performed to confirm the effectiveness of the new numerical

methods.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The heat conduction problem we consider is:

ou
ot

¼ mMu in X; ð1Þ

u ¼ uB on CB; ð2Þ

u ¼ uF on CF; ð3Þ

where u is a scalar temperature field of heat distribution

and m is the heat diffusion coefficient. We take a bounded

domain D in Rk and a spacetime domain X ¼ D� ð0; T Þ
in Rkþ1 for a final time T > 0, and write two surfaces

CB ¼ oD� ½0; T � and CF ¼ D� fTg of the boundary oX.
M denotes the k-dimensional Laplacian operator. Eqs.
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(1)–(3) constitute a k-dimensional backward heat con-

duction problem for a given boundary data uB : CB 7!R

and a final data uF : CF 7!R.

The backward heat conduction problem is an ill-

posed problem [1] in the sense that the solution is

unstable for a given final data uF. For example,

uðx; tÞ ¼ exp½a2ðT � tÞ� sin ax is the solution of Eq. (1)

with k ¼ 1 and m ¼ 1, subjecting to the final data

uðx; T Þ ¼ sin ax. Thus, by taking a arbitrarily large

uðx; 0Þ ¼ exp½a2T � sin ax can become unbounded.

It is well known that the approach of ill-posed

problems by numerical methods is usually difficult [2–

7]. For example, for any time step size Dt > 0 in the

time range ½0; T �, and for any lattice spacing length

Dx1 > 0; . . . ;Dxk > 0, in each coordinate we can show

that the following finite-difference scheme of Eq. (1)

is unstable even under the von Neumann condition,

which is a necessary numerical stability condition for

the forward finite difference scheme of initial-value

problem [8]:
ed.
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Nomenclature

a contraction factor

b ¼ aðDxÞ2
m : constant

A augmented matrix

Aj coefficient matrix at the jth time step

C constant

C constant matrix

D domain in Rk

oD the boundary of D
D domain in Rn � R

f n-dimensional vector field

fj numerical value of f at the jth time step

g nþ 1-dimensional Minkowski metric

In n-dimensional unit matrix

L Lipschitz constant

k � k Euclidean norm

k � kL2 L2-norm

m index m ¼ 1; . . . ; n
Mnþ1 nþ 1-dimensional Minkowski space

nj unit vector at the jth time step

n number of interior grid points

ns number of reverse time steps

nt number of time steps

N the set of positive integers

Oð1Þ order of numerical value

r ¼ mDt
ðDxÞ2: stability index

rmax maximum value of r for stability
R the set of real numbers

Rn n-dimensional real space

s ¼ T � t: reverse time

Ds reverse time increment

SOoðn; 1Þ nþ 1-dimensional Lorentz group

t time

tj discretized time of jth step

Dt time increment

T final time

½0; T � the times t such that 06 t6 T
ð0; T Þ the times t such that 0 < t < T
u heat distribution

ui numerical value of u at the ith grid point

uji the jth time step value of u at the ith grid

point

ui;j numerical value of u at the ði; jÞth grid point

vi;j numerical value of v at the ði; jÞth grid point

u n-dimensional vector

uj numerical value of u at the jth time step

uB the boundary value on CB

uF the final data on CF

vj numerical value of v at the jth reverse time

step

v ¼ exp½�as�u: new variable

x space variable

Dx lattice spacing length of x
xk the kth space coordinate

Dxk lattice spacing length of xk
X nþ 1-dimensional augmented vector

y space variable

Dy lattice spacing length of y

Greek symbols

a constant

gj adaptive factor at the jth time step

X ¼ D� ð0; T Þ: spacetime domain

oX the boundary of X
CB ¼ oD� ½0; T �: t-direction boundary of X
CF ¼ D� fTg: final time boundary of X
M Laplace operator

m heat diffusion coefficient

Subscripts and superscripts

i,j,k indices

t transpose
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uðx1; . . . ; xk ; t þ DtÞ � uðx1; . . . ; xk ; tÞ
mDt

¼ fuðx1 þ Dx1; . . . ; xk ; tÞ � 2uðx1; . . . ; xk ; tÞ

þ uðx1 � Dx1; . . . ; xk ; tÞg=ðDx1Þ2 þ � � �
þ fuðx1; . . . ; xk þ Dxk ; tÞ � 2uðx1; . . . ; xk ; tÞ

þ uðx1; . . . ; xk � Dxk ; tÞg=ðDxkÞ2: ð4Þ

In order to calculate the backward heat conduction

problems, there appears certain progress in this issue,

including, for example, the boundary element method

[2], the iterative boundary element method [3,4], the

operator-splitting method [5], and the lattice-free high-

order finite difference method [6]. A recent review of the

numerical backward heat conduction problems was
provided in [7]. In this paper we are going to calculate

the heat conduction problems (forward or backward) by

a semi-discretization method, which replaces Eq. (4) by a

set of ordinary differential equations:

ouðx1; . . . ; xk ; tÞ
mot

¼ fuðx1 þ Dx1; . . . ; xk ; tÞ � 2uðx1; . . . ; xk ; tÞ
þ uðx1 � Dx1; . . . ; xk ; tÞg=ðDx1Þ2 þ � � �
þ fuðx1; . . . ; xk þ Dxk ; tÞ � 2uðx1; . . . ; xk ; tÞ
þ uðx1; . . . ; xk � Dxk ; tÞg=ðDxkÞ2 ð5Þ

At the interior grid points we select in the domain D,
together with the group preserving scheme for ordinary

differential equations developed in [9].
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Consider a system of n ordinary differential equa-

tions:

_u ¼ fðu; tÞ; u 2 Rn; t 2 R; ð6Þ

where u is an n-dimensional vector, t is a time variable,

and f is a vector-valued function of u and t, also named

vector field. The dot stands for the differential with re-

spect to t. For the uniqueness of the solution, the

Lipschitz condition is assumed:

kfðu; tÞ � fðy; tÞk6Lku� yk; 8ðu; tÞ; ðy; tÞ 2 D; ð7Þ

where D is a domain in Rn � R, and L is known as a

Lipschitz constant.

Liu [9] has extended Eq. (6) to the following form:

d

dt
u

kuk

� �
¼

0n�n
fðu;tÞ
kuk

ftðu;tÞ
kuk 0

" #
u

kuk

� �
ð8Þ

if kuk > 0, where kuk stands for the Euclidean norm of

u, and the superscript �t’ denotes the transpose. It is

obvious that the first equation is the same as the original

equation (6), but the introduction of the second equa-

tion led to a Minkowskian structure for the augmented

non-linear system with the augmented variables X ¼
ðut; kukÞt satisfying

XtgX ¼ 0; ð9Þ

where

g ¼ In 0n�1

01�n �1

� �
ð10Þ

is a Minkowski metric, and In is the identity matrix of

order n.
For this form _X ¼ AX the augmented matrix A is

given by

A ¼
0n�n

fðu;tÞ
kuk

ftðu;tÞ
kuk 0

" #
; ð11Þ

and satisfies

Atgþ gA ¼ 0; ð12Þ

which shows that A is a Lie algebra of the Lorentz group

SOoðn; 1Þ.
2. The group preserving schemes

Remarkably the original n-dimensional dynamical

system (6) in Rn can be embedded naturally into an

augmented nþ 1-dimensional dynamical system (8) in

Mnþ1, satisfying the cone condition:

XtgX ¼ u � u� kuk2 ¼ kuk2 � kuk2 ¼ 0; ð13Þ
which is thus the most natural constraint that we can

impose on the dynamical system (8). Even raising the

dimension of the new system by one, shows that the new

system with its Lie algebra property (12) has the

advantage of allowing us to develop the group preserv-

ing numerical scheme [9]:

ujþ1 ¼ uj þ 4Dtkujk2 þ 2ðDtÞ2fj � uj

4kujk2 � ðDtÞ2kfjk2
fj: ð14Þ

The numerical formula (14), which upon comparing

with the Euler scheme

ujþ1 ¼ uj þ Dtfj;

can be viewed as a weighting factor adaptive numerical

scheme:

ujþ1 ¼ uj þ gjDtf
j ð15Þ

with the adaptive factor

gj ¼
4kujk2 þ 2Dtfj � uj

4kujk2 � ðDtÞ2kfjk2
ð16Þ

changing step-by-step. In above, uj denotes the numer-

ical value of u at a discrete time tj, Dt ¼ tjþ1 � tj is a

uniform time increment, and fj denotes fðuj; tjÞ.
3. The forward heat conduction problems

3.1. Semi-discretization

The numerical method of line is simple in concept,

that for a given system of partial differential equations

discretize all but one of the independent variables [10].

The semi-discrete procedure yields a coupled system of

ordinary differential equations, which are then numeri-

cally integrated. For the one-dimensional heat flow

equation we adopt the numerical method of line to

discretize the spatial coordinate x by

o2uðx; tÞ
ox2

x¼iDx

����� ¼ uiþ1ðtÞ � 2uiðtÞ þ ui�1ðtÞ
ðDxÞ2

;

where Dx is a uniform discretization spacing length, and

uiðtÞ ¼ uðiDx; tÞ, such that Eq. (1) can be approximated

by

ouiðtÞ
ot

¼ m

ðDxÞ2
½uiþ1ðtÞ � 2uiðtÞ þ ui�1ðtÞ�: ð17Þ

The next step is to advance the solution from the

initial condition to the desired time T . Really, Eq. (17)

has totally n coupled linear differential equations for the

n variables uiðtÞ; i ¼ 1; 2; . . . ; n, which can be numerically
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integrated to obtain the solutions. If we further assume

that

ouiðtÞ
ot

¼ uiððjþ 1ÞDtÞ � uiðjDtÞ
Dt

by a forward time difference for the partial derivative of

u with respect to t, then we fully discretize Eq. (1) into

the following form:

ujþ1
i ¼ r½ujiþ1 þ uji�1� þ ð1� 2rÞuji ;
j ¼ 0; 1; . . . ; nt; i ¼ 1; . . . ; n; ð18Þ

where nt is the number of time steps such that Dt ¼ T=nt,
and all u0i ; i ¼ 1; . . . ; n, are known from the initial con-

dition. For saving notation we have let

uji ¼ uðiDx; jDtÞ; ð19Þ

and

r ¼ mDt

ðDxÞ2
ð20Þ

denote the stability index. We can step the solution ujþ1
i

forward in time according to Eq. (18), since all the terms

on the right-hand side are already known at the previous

time step. If the ratio r is chosen as less than one-half,

there will be improved accuracy. If the ratio r is chosen
greater than one-half, the number of calculations re-

quired to advance the solution through a given interval

of time would reduce. However, for numerical scheme

(18) there is no such freedom to select larger r, because
when r > 1=2 the instability renders the scheme to fail to

calculate the heat responses [8].
3.2. Group preserving scheme

In addition to the explicit scheme of the Euler type,

introduced in the previous subsection, we attempt to

develop another explicit scheme for the heat flow equa-

tion according to the formalism specified in Section 2.

From Eq. (17) we have an ordinary differential equa-

tions system for the n unknowns uiðtÞ; i ¼ 1; 2; . . . ; n.
Employing the numerical scheme developed in Section 2

to Eq. (17) we obtain

ujþ1
i ¼ uji þ gjr½ujiþ1 � 2uji þ uji�1�; ð21Þ

which is then rearranged to

ujþ1
i ¼ rgj½ujiþ1 þ uji�1� þ ð1� 2rgjÞuji : ð22Þ

If gj ¼ 1 for each time step tj, then the above scheme is

reduced to scheme (18).
3.3. Stability analysis

Let us introduce the constant matrix

C ¼

�2 1

1 �2 1

� � �
� � �

� � �
1 �2

2
66666664

3
77777775
; ð23Þ

whose dimension is n� n. The factor gj in Eq. (21) can

be written as

gj ¼
4kujk2 þ 2rðujÞtCuj

4kujk2 � r2ðujÞtC2uj
; ð24Þ

upon inserting the vector fields fj ¼ mCuj=ðDxÞ2 into

Eq. (16), where uj ¼ ðuj1; u
j
2; . . . ; u

j
nÞ

t
. The eigenvalues of

C are found to be

�4 sin2 mp
2ðnþ 1Þ ; m ¼ 1; 2; . . . ; n; ð25Þ

which together with the symmetry of C indicates that C

is negative definite. Thus, from Eq. (24) it follows that

gj ¼
4� 2rðnjÞtð�CÞnj

4� r2ðnjÞtC2nj
; ð26Þ

where nj ¼ uj=kujk is a unit vector. Because of

4 sin2 np
2ðnþ 1Þ P ðnjÞtð�CÞnj P 4 sin2 p

2ðnþ 1Þ ; ð27Þ

16 sin4 np
2ðnþ 1Þ P ðnjÞtC2nj P 16 sin4 p

2ðnþ 1Þ ; ð28Þ

the upper bound of gj can be estimated as follows:

gj 6
1� 2r sin2 p

2ðnþ1Þ

1� 4r2 sin4 np
2ðnþ1Þ

: ð29Þ

We proceed to investigate the stability of scheme

(22), which can be expressed as the matrix equation

ujþ1
1

ujþ1
2

�
�
�

ujþ1
n

2
666666664

3
777777775
¼

1� 2gjr gjr
gjr 1� 2gjr gjr

� � �
� � �

� � �
gjr 1� 2gjr

2
6666664

3
7777775

uj1
uj2
�
�
�
ujn

2
666666664

3
777777775
;

ð30Þ

or in vector form

ujþ1 ¼ Aju
j ¼ ðIn þ gjrCÞuj; ð31Þ

where Aj represents the coefficient matrix at the time

step tj. The eigenvalues of Aj are found to be

1� 4gjr sin
2 mp
2ðnþ 1Þ ; m ¼ 1; 2; . . . ; n:



Fig. 1. The sufficient condition of the stability of the group

preserving scheme is obtained by r < rmax, which is plotted with

respect to the number n of the interior grid points. For the

backward problem it shares the same curve if b ¼ 4.
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Thus, we have a stable scheme for Eq. (22) if

�16 1� 4gjr sin
2 mp
2ðnþ 1Þ 6 1

for each j ¼ 1; 2; . . . ; nt, where nt ¼ T=Dt. One sufficient

condition for the stability of the scheme is

gjr6
1

2
: ð32Þ

Substituting Eq. (29) for gj into the above inequality we

obtain

gjr6
r � 2r2 sin2 p

2ðnþ1Þ

1� 4r2 sin4 np
2ðnþ1Þ

: ð33Þ

Due to

sin4 np
2ðnþ 1Þ � sin2 p

2ðnþ 1Þ > 0; 8n 2 N; ð34Þ

from Eq. (33) we find that the range of r for stability is

r6 rmax ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 sin4 np

2ðnþ1Þ � sin2 p
2ðnþ1Þ

h ir

4 sin4 np
2ðnþ1Þ � sin2 p

2ðnþ1Þ

h i : ð35Þ

In Fig. 1, rmax is plotted with respect to n, of which we

can see that the admissible range of r is smaller than 1/2

for the Euler method.
4. The backward heat conduction problems

4.1. Semi-discretization

In order to treat the one-dimensional backward heat

conduction problems (1)–(3), let us consider the inde-
pendent variable transformation s ¼ T � t, reversing the

time direction, such that one has

ou
os

¼ �m
o2u
ox2

; x 2 D; 0 < s < T ; ð36Þ

uðx; sÞ ¼ uB; x 2 oD; ð37Þ

uðx; 0Þ ¼ uF; x 2 D: ð38Þ

Here u ¼ uðx; sÞ. In terms of the reverse time s it is a

forward initial-boundary-value problem; however, the

heat diffusion coefficient �m is negative.

The semi-discretization of Eq. (36) is

ouiðsÞ
os

¼ m

ðDxÞ2
½�uiþ1ðsÞ þ 2uiðsÞ � ui�1ðsÞ�: ð39Þ

Due to the positive factor 2m=ðDxÞ2 preceding uiðsÞ, any
numerical integration scheme will blow up very soon.

Therefore, let us further consider the dependent vari-

ables transformation

viðsÞ ¼ e�asuiðsÞ; i ¼ 1; . . . ; n; ð40Þ

where a > 0 is a contraction factor to be determined,

such that the discretization (39) in terms of viðsÞ is

changed to

oviðsÞ
os

¼ �aviðsÞ þ
m

ðDxÞ2
½�viþ1ðsÞ þ 2viðsÞ � vi�1ðsÞ�

¼ 2m

ðDxÞ2

"
� a

#
viðsÞ �

m

ðDxÞ2
½viþ1ðsÞ þ vi�1ðsÞ�:

ð41Þ

Clearly, we prefer to choose a such that 2m=ðDxÞ2 � a6 0

for numerical stability reasons. The stability analyses

of the above equation by group preserving scheme is

reported below. The discretized conditions of v and u
at s ¼ 0 are both the same, obtained by inserting the

discretized xi ¼ iDx; i ¼ 1; . . . ; n, into Eq. (38). After

viðsÞ is integrated numerically, we can obtain uiðsÞ ¼
easviðsÞ.

4.2. Stability analysis

Employing the group preserving scheme to Eq. (41)

we obtain

vjþ1
i ¼ vji þ gjr½2� b�vji � gjr½vjiþ1 þ vji�1�; ð42Þ

where

b ¼ aðDxÞ2

m
: ð43Þ

In the vector form as that done in Eq. (31), from Eq. (42)

we have

vjþ1 ¼ Ajv
j ¼ ½In � gjrðbIn þ CÞ�vj; ð44Þ
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where vj ¼ ðvj1; v
j
2; . . . ; v

j
nÞ

t
, the matrix C is still defined

by Eq. (23), and Aj represents the new coefficient

matrix at the time step tj. The eigenvalues of Aj are

found to be

1� bgjr þ 4gjr sin
2 mp
2ðnþ 1Þ ; m ¼ 1; 2; . . . ; n:

The scheme (42) is stable if

�16 1� bgjr þ 4gjr sin
2 mp
2ðnþ 1Þ 6 1 ð45Þ

for each j ¼ 1; 2; . . . ; ns, where ns ¼ T=Ds. One sufficient

condition for the stability of this scheme is bP 4 and

gjr6
2

b
<

2

b� 4 sin2 mp
2ðnþ1Þ

: ð46Þ

The adaptive factor gj can be written as

gj ¼
4kvjk2 � 2r½ðvjÞtCvj þ bkvjk2�

4kvjk2 � r2½ðvjÞtC2vj þ 2bðvjÞtCvj þ b2kvjk2�
; ð47Þ

upon inserting the vector fields fj ¼ �mCvj=ðDxÞ2 �
bmvj=ðDxÞ2 into Eq. (16).

Let nj ¼ vj=kvjk be a unit vector, and Eq. (47) is

changed to

gj ¼
4� 2r½ðnjÞtCnj þ b�

4� r2½ðnjÞtC2nj þ 2bðnjÞtCnj þ b2�
: ð48Þ

Due to Eqs. (27) and (28), the upper bound of gj can be

estimated as follows:

gj 6
4þ 8r sin2 p

2ðnþ1Þ � 2br

4� 16r2 sin4 np
2ðnþ1Þ þ 8br2 sin2 p

2ðnþ1Þ � b2r2
: ð49Þ

Substituting Eq. (49) for gj into the inequality (46) we

obtain

4r þ 8r2 sin2 p
2ðnþ1Þ � 2br2

4� 16r2 sin4 np
2ðnþ1Þ þ 8br2 sin2 p

2ðnþ1Þ � b2r2
6

2

b
: ð50Þ

Therefore the range of r for stability is found to be

r6 rmax ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 8 8 sin4 np

2ðnþ1Þ � 2b sin2 p
2ðnþ1Þ

h ir

2
h
8 sin4 np

2ðnþ1Þ � 2b sin2 p
2ðnþ1Þ

i :

ð51Þ

When b ¼ 4 the above formula is equivalent to Eq. (35),

and rmax was already plotted in Fig. 1 with respect to n.
In the same figure we also plot the curves for b ¼ 4:5 and
b ¼ 5. The stability range decreases when b increases.

However, we should stress that the stability criterion just

provides a sufficient condition, which does not mean

that the numerical scheme with a smaller value of b < 4

will be unstable.
5. Numerical examples

5.1. Example one

Let us first consider the one-dimensional heat flow

equation

ut ¼ muxx; 0 < x < 2; 0 < t < T ; ð52Þ

with the boundary conditions

uð0; tÞ ¼ uð2; tÞ ¼ 0;

and the initial condition

uðx; 0Þ ¼ 100x; for 06 x6 1;
100ð2� xÞ; for 16 x6 2:

�

The exact solution is given by

uðx; tÞ ¼ 800
X1
k¼0

1

p2ð2k þ 1Þ2
cos

ð2k þ 1Þpðx� 1Þ
2

� exp½�p2mð2k þ 1Þ2t=4�: ð53Þ

The numerical solution is subjected to the initial

condition

uið0Þ ¼
100iDx; for 06 iDx6 1;
100ð2� iDxÞ; for 16 iDx6 2:

�
ð54Þ

The one-dimensional domain [0,2] is discretized by nþ 2

points and i in ui is numbered from 0 to nþ 1. The two

boundary conditions at the two end points are specified

by u0ðtÞ ¼ unþ1ðtÞ ¼ 0. The error of numerical solution

at point x ¼ 0:8 is plotted in Fig. 2, and the error at time

T ¼ 1 is plotted in Fig. 2(b). For this computational

example we have taken m ¼ 0:1, n ¼ 100 and Dt ¼ 0:001
s. The exact solution is obtained from Eq. (54) by taking

the sum of the first hundred terms, which guarantees the

convergence of the series solution. The accuracy as can

be seen is in the order of OðDtÞ.

5.2. Example two

Let us then consider the one-dimensional heat flow

equation

ut ¼ uxx; 0 < x < 1; 0 < t < T ; ð55Þ

with the boundary conditions

uð0; tÞ ¼ 0; uð1; tÞ ¼ 1;

and the initial condition

uðx; 0Þ ¼ sinpxþ x:

The exact solution is given by

uðx; tÞ ¼ e�p2tsinpxþ x: ð56Þ



Fig. 2. The errors of numerical solutions for example one are

plotted in (a) with respect to time at a fixed grid point x ¼ 0:8,

and in (b) with respect to x at the final time T ¼ 1.
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The numerical solution by group preserving scheme

(GPS) is summarized in Table 1 to show the numerical

values at point x ¼ 0:5 for different times, where n ¼ 20

and Dt ¼ 0:001 s were used in our calculation. In the

same table the Galerkin solutions given in [11] with

N ¼ 2; 3 orders are also included to compare with the

exact solution (56) as well as with GPS solutions. It can

be seen that GPS solutions are more accurate than that
Table 1

The comparison of numerical solutions with exact solution of

example two

Time (s) Galerkin

ðN ¼ 2Þ
Galerkin

ðN ¼ 3Þ
GPS Exact

0.02 1.32611 1.32020 1.32083 1.32087

0.04 1.18389 1.17278 1.17373 1.17383

0.06 1.06757 1.05188 1.05296 1.05312

0.08 0.97242 0.95274 0.95382 0.95404

0.10 0.89461 0.87144 0.87243 0.87271

0.12 0.83096 0.80477 0.80563 0.80594

0.14 0.77890 0.75009 0.75080 0.75114

0.16 0.73632 0.70526 0.70580 0.70615

0.18 0.70150 0.66849 0.66886 0.66922

0.20 0.67301 0.63833 0.63856 0.63891
of the Galerkin solutions. Our scheme is easier to

implement than that of the Galerkin method, which

requires to do a lot of integrals before obtaining the N
ordinary differential equations for the N variable coef-

ficients.

5.3. Example three

Let us consider the third example of one-dimensional

backward heat flow equation

ut ¼ uxx; �p < x < p; T > t > 0; ð57Þ

with the boundary conditions

uð�p; tÞ ¼ uðp; tÞ ¼ 0;

and the final time condition

uðx; T Þ ¼ e�a2T sin ax:

The exact solution is given by

uðx; tÞ ¼ e�a2t sin ax; ð58Þ

where a 2 N is a positive integer.

As remarked in Section 1 this problem is ill-posed.

However, we can demonstrate it further by considering

the L2-norms of u and its final data:

kuðx; tÞk2L2 ¼
Z T

0

Z p

�p
ðe�a2 t sin axÞ2 dxdt

¼ 1

2a2
ðe2a2T � 1Þ

Z p

�p
ðe�a2T sin axÞ2 dx: ð59Þ

Since, for any C > 0 there exists a 2 N such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2a2T � 1

p
=ð

ffiffiffi
2

p
aÞ > C, an inequality kuðx; tÞkL2 >

CkuFkL2 holds for any C > 0. This means that the

solution does not depend on the final data continuously.

Therefore, the backward heat conduction problem is

unstable for given final data with respect to the L2-norm.

The larger a is, the worse the final data dependence of

the solution is. In other words, the problem is more ill-

posed when a is larger. While we said that the problem

with aP 3 is strongly ill-posed, those with a < 3 may be

said to be moderately or weakly ill-posed.

In Fig. 3 we show the numerical results compared

with the exact solution (58) at time t ¼ 0 for three cases

a ¼ 1; 2; 3. T ¼ 1 s was used in this comparison, the grid

length is taken to be Dx ¼ p=10 for the first and second

cases and Dx ¼ p=13 for the last case, the step size of s is
taken to be Ds ¼ 0:1 s, and b ¼ 2 was chosen. For the

first case the numerical error is very small in the order

Oð10�3Þ, and for the second case the numerical error

increased to the order Oð10�2Þ. For the last case it can be

seen that the error is rather large in the order of Oð10�1Þ,
which is due to the very small final data in the order

Oð10�4Þ when compared with the desired initial data



Fig. 3. The comparison of exact solutions and numerical

solutions for example three of one-dimensional backward

problem are made in (a) with the case a ¼ 1, (b) with the case

a ¼ 2, and (c) with the case a ¼ 3. The errors of numerical

solutions are plotted in (d) with respect to x at the initial time

t ¼ 0.
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sin ax of order Oð1Þ to be retrieved, and is also due to the

accumulation of round-off error in the computation. It

should be reminded that the contraction factor

a ¼ b=ðDxÞ2 was selected according to two criteria:

numerical stability and to avoid a very large value of

expðaT Þ. Since b is an important factor, we compare the

numerical errors at different grid points of this example

with a ¼ 1 for different b’s in Table 2. The numerical

errors at the mid grid point, i.e. x ¼ 0, are all zero. It can

be seen that the three b ¼ 1:5; 2; 2:5 give little influence
Table 2

The comparison of numerical errors with different b’s of example thr

x ¼ �pþ kp=10 b ¼ 1:5 b ¼ 2

k ¼ 3 0.6605· 10�2 0.6602· 10�2

k ¼ 5 0.8164· 10�2 0.8160· 10�2

k ¼ 9 0.2523· 10�2 0.2522· 10�2

k ¼ 14 0.7765· 10�2 0.7768· 10�2

k ¼ 16 0.7765· 10�2 0.7768· 10�2

k ¼ 18 0.4799· 10�2 0.4801· 10�2
on the numerical errors. When b ¼ 3 the numerical

errors at the first three grid points are smaller than the

others, but the numerical errors at the last three grid

points are larger than the others. Upon using b ¼ 4 we

require larger Dx to avoid larger a. For example, by

using Dx ¼ 2p=15 and Ds ¼ 0:05 s on this case, the

numerical errors are increased to the order Oð10�2Þ at

several grid points. Under this condition the enlarged

factor expðaÞ ¼ expð22:8Þ is too large to increase the

accuracy.

5.4. Example four

Let us consider the final example of two-dimensional

backward heat flow equation

ut ¼ uxx þ uyy ; �p < x < p; �p < y < p; T > t > 0;

ð60Þ

with the boundary conditions

uð�p; y; tÞ ¼ uðp; y; tÞ ¼ uðx;�p; tÞ ¼ uðx; p; tÞ ¼ 0;

ð61Þ

and the final time condition

uðx; y; T Þ ¼ e�2a2T sin ax sin ay: ð62Þ

The exact solution is given by

uðx; y; tÞ ¼ e�2a2t sin ax sin ay; ð63Þ

where a 2 N is a positive integer.

Upon considering the independent variable trans-

formation s ¼ T � t, Eqs. (60)–(62) become

us ¼ �uxx � uyy ; �p < x < p; �p < y < p; 0 < s < T ;

ð64Þ

uð�p; y; sÞ ¼ uðp; y; sÞ ¼ uðx;�p; sÞ ¼ uðx; p; sÞ ¼ 0;

ð65Þ

uðx; y; 0Þ ¼ e�2a2T sin ax sin ay: ð66Þ

Here u is a function with u ¼ uðx; y; sÞ. In terms of s it is
a forward initial-boundary-value problem. The semi-

discretization of Eq. (64) is
ee with a ¼ 1

b ¼ 2:5 b ¼ 3

0.6631· 10�2 0.4805· 10�2

0.8187· 10�2 0.5970· 10�2

0.2515· 10�2 0.1996· 10�2

0.7753· 10�2 0.9771· 10�2

0.7737· 10�2 0.9884· 10�2

0.4780· 10�2 0.6102· 10�2
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oui;jðsÞ
os

¼ 1

ðDxÞ2
½�uiþ1;jðsÞ þ 2ui;jðsÞ � ui�1;jðsÞ�

þ 1

ðDyÞ2
½�ui;jþ1ðsÞ þ 2ui;jðsÞ � ui;j�1ðsÞ�: ð67Þ

where ui;jðsÞ ¼ uðiDx; jDy; sÞ. Then, let us consider the

dependent variables transformation

vi;jðsÞ ¼ e�asui;jðsÞ; i ¼ 1; . . . ; n; j ¼ 1; . . . ; n; ð68Þ

such that the discretization (67) in terms of vi;jðsÞ is

changed to

ovi;jðsÞ
os

¼ 2

ðDxÞ2

"
þ 2

ðDyÞ2
� a

#
vi;jðsÞ�

1

ðDxÞ2

� ½viþ1;jðsÞþ vi�1;jðsÞ� �
1

ðDyÞ2
½vi;jþ1ðsÞþ vi;j�1ðsÞ�:

ð69Þ

Clearly, we prefer to choose a such that 2=ðDxÞ2 þ 2=
ðDyÞ2 � a6 0 for numerical stability reasons.

In Fig. 4 we show the errors of numerical solutions

by taking the absolute of the differences with respect to

the exact solution (63) at time t ¼ 0 for one case a ¼ 1.
Fig. 4. The errors of numerical solutions for example four of

two-dimensional backward problem are plotted in (a) with

respect to time at a fixed grid point ðp=2; 2p=3Þ, and in (b) at

the initial time with respect to y and fixed x ¼ p=2 (- - -), and

with respect to x and fixed y ¼ 2p=3 (––).
T ¼ 1 s was used in this comparison, the grid lengths are

taken to be Dx ¼ Dy ¼ p=6, the step size of s is taken to

be Ds ¼ 0:01 s, and a ¼ 4=ðDxÞ2 þ 4=ðDyÞ2 was chosen

for stability. In Fig. 4(a) the numerical error is plotted

with respect to time at the grid point ðx; yÞ ¼ ðp=2;
2p=3Þ. At the same time, the numerical errors at zero

time are plotted in Fig. 4(b) with a dashed line for fixed

x ¼ p=2 and varied y in the range ½�p; p�, and with a

solid line for fixed y ¼ 2p=3 and varied x in the range

½�p; p�.
6. Conclusions

The heat conduction problems are calculated by the

formulation with a semi-discretization of heat conduct-

ing equations in conjuction with the group preserving

numerical integration scheme. As well known, in the

backward numerical integration of the heat conduction

equations, a simple employment of the finite difference

or finite element method with negative time steps is

numerically unstable. In this paper we are concerned

with this numerical integration problem, in which the key

points were the consideration of two transformations:

s ¼ T � t and v ¼ exp½�as�u. The first transformation

renders the backward problem to become a forward

problem, and then the second transformation stabilizes

it to a semi-discretized system of ordinary differential

equations. The factor a is very important by subjecting

certain constraints. The ranges of a and the stability

index r of the group preserving scheme, which applied on

the ordinary differential equations at the interior grid

points, were analyzed and given. Four numerical exam-

ples (two of forward problems and the other two of

backward problems) were worked out, which show that

our numerical integration methods are applicable to the

forward problems and also to the backward problems

with weak or moderate ill-posedness.
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